Continuity Homework

1. Consider the functions f and g shown below. (The function f is shown on the left and the function g is shown on the right.)

a. Is the function $h(x)=f(x)+g(x)$ defined at $x=-2$? If so, what is $h(-2)$?
b. Does $\lim _{x \rightarrow-2}(f(x)+g(x))$ exist? If so, what is it?
c. Is the function $(f+g)$ continuous at $x=-2$? Explain.
d. Is the function $h(x)=f(x) g(x)$ continuous at $\mathrm{x}=1$? Explain.
e. Is the function $h(x)=\frac{f(x)}{g(x)}$ continuous at $\mathrm{x}=-2$? Explain.
2. Is it possible to find a constant a such that $g(x)=\left\{\begin{array}{ll}\frac{a}{x} & \text { for } x<5 \\ -1 & \text { for } x=5 \\ \frac{x}{a} & \text { for } x>5\end{array}\right.$ is continuous at $x=5$? Explain.
3. Is it possible to find constants a and b such that $g(x)= \begin{cases}x^{3} & \text { for } x<-1 \\ a x+b & \text { for }-1 \leq \mathrm{x}<1 \\ x^{2}+2 & \text { for } x \geq 1\end{cases}$ is continuous for all x ? Explain.
4. Let $f(x)=\left\{\begin{array}{ll}a x^{2}+3 & \text { for } x<2 \\ 3 x-5 & \text { for } \mathrm{x} \geq 2\end{array}\right.$.
a. Find a so that f is continuous at $\mathrm{x}=2$.
b. For that value of a, is f differentiable at $\mathrm{x}=2$? Justify your answer using the definition of the derivative.
